Разница между бустингом и бэггингом заключается в том, как они комбинируют прогнозы базовых моделей:
1. Бэггинг • Принцип: В бэггинге создается множество подвыборок данных путем случайного выбора с заменой из исходного набора данных. Затем над каждой подвыборкой обучается отдельная базовая модель (например, решающее дерево). • Прогноз: Прогнозы отдельных моделей усредняются (для регрессии) или выбирается наиболее часто встречающийся класс (для классификации). • Пример: Случайный лес (Random Forest) - это пример бэггинга, где базовые модели - решающие деревья.
2. Бустинг • Принцип: В бустинге базовые модели обучаются последовательно. Каждая новая модель фокусируется на ошибках, сделанных предыдущими моделями, и пытается их исправить. • Прогноз: Прогнозы базовых моделей взвешиваются, и веса назначаются на основе их производительности. Прогнозы базовых моделей объединяются, и каждая следующая модель старается уменьшить ошибки предыдущих. • Пример: Градиентный бустинг (Gradient Boosting) и AdaBoost - это популярные методы бустинга.
В бэггинге модели независимы и усредняются, в то время как в бустинге модели взаимодействуют и учатся на ошибках друг друга, что позволяет им вместе достичь лучшей производительности.
Разница между бустингом и бэггингом заключается в том, как они комбинируют прогнозы базовых моделей:
1. Бэггинг • Принцип: В бэггинге создается множество подвыборок данных путем случайного выбора с заменой из исходного набора данных. Затем над каждой подвыборкой обучается отдельная базовая модель (например, решающее дерево). • Прогноз: Прогнозы отдельных моделей усредняются (для регрессии) или выбирается наиболее часто встречающийся класс (для классификации). • Пример: Случайный лес (Random Forest) - это пример бэггинга, где базовые модели - решающие деревья.
2. Бустинг • Принцип: В бустинге базовые модели обучаются последовательно. Каждая новая модель фокусируется на ошибках, сделанных предыдущими моделями, и пытается их исправить. • Прогноз: Прогнозы базовых моделей взвешиваются, и веса назначаются на основе их производительности. Прогнозы базовых моделей объединяются, и каждая следующая модель старается уменьшить ошибки предыдущих. • Пример: Градиентный бустинг (Gradient Boosting) и AdaBoost - это популярные методы бустинга.
В бэггинге модели независимы и усредняются, в то время как в бустинге модели взаимодействуют и учатся на ошибках друг друга, что позволяет им вместе достичь лучшей производительности.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.
Telegram Gives Up On Crypto Blockchain Project
Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”
Библиотека собеса по Data Science | вопросы с собеседований from ar